Wave separation in the trumpet under playing conditions and comparison with time domain finite difference simulation.
نویسندگان
چکیده
Wave separation within a trumpet is presented using three high pressure microphones to measure pressure waves within the curved, constant cross-section tuning slide of the instrument while the instrument was being played by a virtuoso trumpet player. A closer inter-microphone spacing was possible in comparison to previous work through the use of time domain windowing on non-causal transfer functions and performing wave separation in the frequency domain. Time domain plots of the experimental wave separation were then compared to simulations using a physical model based on a time domain finite difference simulation of the trumpet bore coupled to a one mass, two degree of freedom lip model. The time domain and frequency spectra of the measured and synthesized sounds showed a similar profile, with the sound produced by the player showing broader spectral peaks in experimental data. Using a quality factor of 5 for the lip model was found to give greater agreement between the simulated and experimental starting transients in comparison to the values in the range 1-3 often assumed. Deviations in the spectral content and wave shape provide insights into the areas where future research may be directed in improving the accuracy of physical modeling synthesis.
منابع مشابه
An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملMPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling
Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...
متن کاملتحلیل آنتن پلاسمای ستونی با تحریک موج سطحی
This theoretical study examines the characteristics of a surface wave driven plasma monopole antenna using finite difference time domain method (FDTD) as well as commercial full wave simulator. The results show that the full wave simulator can be considered as an acceptable tool in simulation of a plasma antenna. Input impedance, radiation pattern, gain, efficiency and radar cross section of pl...
متن کاملFinite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures
Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...
متن کاملتحلیل انتشار امواج الاستیک درون هدایت کننده کریستال فونونیک فولاد- اپوکسی بهکمک روش تفاضل محدود بر مبنای جابهجایی
In order to obtain transmission spectra through a phononic crystal as well as its waveguide, a new algorithm is presented in this paper. By extracting displacement-based forms of elastic wave equations and their discretization, Displacement- Based Finite Difference Time Domain (DBFDTD) algorithm is presented. Two numerical examples are solvcd with this method and the results are compared with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 134 2 شماره
صفحات -
تاریخ انتشار 2013